黎曼猜想的来源是怎样的(2)

而到底什么是黎曼函数呢?其实这是一种比较特殊的函数,之前并没有任何人提出过,是颇具盛名的黎曼首先提出来的。黎曼的这一函数定义在[0,1]上,而且函数中的R(x)=1/q,当x=p/q(p,q都属于正整数,p/q为既约真分数)的时候,R(x)=0,后来,这一函数在高等数学中经常被用到,对后来的学科产生了不能替代的影响,并且能够在很多情况下,用来作为反例来证明很多函数方面的命题,对世界各国的数学都有一定的影响。

而从黎曼的函数中得出来的推论也有不少。其中一个便是其函数在(0,1)内的所有无理点处处都有连续,反过来,所有的有理点处处都不连续。另外一个推论则是,该函数在区间[0,1]上是黎曼可积的。从其中也衍生出很多数学上的思索。

黎曼的函数关于无理点、有理点、连续以及不连续的说法,现在也是数学家们研究的对象。后来,还有尼日利亚的数学家对其函数进行过论证,但是并没有得到明确的证明。 [!--empirenews.page--]

黎曼积分

高等数学上,我们会接触到定积分,而定积分还有另外一个名字叫做黎曼积分,他在数学上指的是在一个指定的区间里,存在一个非负函数,而这个函数代表的曲线和坐标轴之间会有一个特定的图形,这个图形的面积一般就被称为定积分,也被叫做黎曼积分。

黎曼图片

黎曼图片

而为什么会用到黎曼积分,这其实和黎曼和有关,这是在求图形的函数图像和坐标轴围城图形的面积过程当中,不是采用过去的几何方法直接去算,而是用黎曼和去逼近,当这两个数值无限接近,那么,就可以求出我们要的结果了。

而黎曼和的计算上大致上有这样几个步骤,分割区间,求和,取极限。区间的分割不是随意的,首先要选择一个闭区间,然后才可以进行分割,对于区间的分割必须尽可能的精细,因为当所取的区间非常小的时候,非负函数的曲线就可以近视的堪为一条直线了,这样一个求面积的计算就变成了求很多个小的长方形的面积了,选择这样的方法来计算图形的面积,可以在允许的范围内最大限度的降低误差。并且把求一个不规则图形的面积转化成求很多个规则图形的面积。

而现在,黎曼积分在数学上几乎成为了高等数学的基础,他作为后续其他课程的基础,如果能够正确的理解极限求和的思想,在以后的高等数学中,学起来就不是很困难了。而今天我们对于积分能够有这样的认知,完全是得益于黎曼当时的研究。

黎曼的成就

黎曼大家都非常熟悉,在数学分析上,我们会学到很多关于黎曼的定理,黎曼的一生当中,可以说是研究成果非常丰富的,他出生在一个传统的牧师家庭,最初是按照父亲的意愿去学习神学,但是由于兴趣使然,后来黎曼转专业开始后研究数学。

黎曼照片

黎曼图片

黎曼的成就在数学可以很清楚的看出来,最开始在老师狄利克雷的指导下,他论证了复变函数可导的充分条件,这是黎曼敲开了数学研究的第一块砖,而从此,黎曼开始在微分几何的相关研究上不断取得全新的进展,他也首次提出了黎曼空间的概念,把当时时代上已知的欧式和非欧式几何通通都归到了黎曼空间的范畴之中。

在贝塔函数上,黎曼的成就也非常大,他在当时他的一篇论文中第一次提到了黎曼曲面,这也是一个非常重要的发现,而把贝塔函数和贝塔积分作为一个全新的研究对象,在当时的数学史上,更是一个转折点,这样的观念对于现代代数拓扑的发展也极为重要。而在黎曼这些研究的指导下,罗赫做了一定的补充,形成了后来非常著名的黎曼罗赫定理。