而到底什么是黎曼函数呢?其实这是一种比较特殊的函数,之前并没有任何人提出过,是颇具盛名的黎曼首先提出来的。黎曼的这一函数定义在[0,1]上,而且函数中的R(x)=1/q,当x=p/q(p,q都属于正整数,p/q为既约真分数)的时候,R(x)=0,后来,这一函数在高等数学中经常被用到,对后来的学科产生了不能替代的影响,并且能够在很多情况下,用来作为反例来证明很多函数方面的命题,对世界各国的数学都有一定的影响。
而从黎曼的函数中得出来的推论也有不少。其中一个便是其函数在(0,1)内的所有无理点处处都有连续,反过来,所有的有理点处处都不连续。另外一个推论则是,该函数在区间[0,1]上是黎曼可积的。从其中也衍生出很多数学上的思索。
黎曼的函数关于无理点、有理点、连续以及不连续的说法,现在也是数学家们研究的对象。后来,还有尼日利亚的数学家对其函数进行过论证,但是并没有得到明确的证明。