目录导航:
- 反常霍尔效应原理
- 量子霍尔效应影响因子有多少
- 霍尔效应和量子霍尔效应的区别
- 反常霍尔效应的应用
- 霍尔效应在科研中的应用
- 为什么磁场中的二维电子气会形成量子霍尔效应呢
外加垂直磁场,可激发半导体的霍尔效应。若赋予强磁场则获得显著霍尔效应,此称反常霍尔效应。
若通过掺杂工艺调整半导体的电子能带结构,赋予超低温超导条件,产生所谓的自发磁场,可显著降低霍尔电阻而改善微电子电路的浪涌或热损弊端。
所谓的量子霍尔效应,只是一种说法。本来,只要电子载流子在运动,就必然会激发霍尔磁场中的场介质产生光量子,作为传递电磁作用力的载体,即“电磁信号交换的工质”。简言之,光量子=工质,普通霍尔效应也是如此。
如果试图利用“1个光量子”的n个态函数作为量子计算的“n个信息单元”,这是徒劳的。
理由是:某光量子的态函数是唯一确定的,虽然,可用n个特征变量(如角动量、波长、频率、矢径)异曲同工来表示“唯1个独立态”。但是,这些特征变量不存在叠加态,即,不存在“n个独立态”。
这与电子计算机用“0&1”或“断&通”的两个“独立态”作为信息单元,是截然不同的。
可这样类比。假设,潘金莲的独立态是一个光量子的态函数,潘金莲的特征变量:a基因序列、b指纹特征、c人脸标识,可以分别等效代换代表潘金莲的独立态,abc既不是三个独立态,也不存在叠加的独立态。
总之,不管清华大学专家们发明了什么量子反常霍尔元件,想改善电子计算机的电路环境,没毛病。但是想要搞量子计算机,不可能。
量子霍尔效应影响因子有多少量子霍尔效应的影响因子是由霍尔电导的量子化现象决定的。在二维电子气体中,霍尔电导以整数或分数的形式量子化,即霍尔电导为整数倍的基本电导量子或分数倍的基本电导量子。这些基本电导量子被称为影响因子。
整数量子霍尔效应的影响因子为1,2,3等,而分数量子霍尔效应的影响因子为1/3,2/5,3/7等。这些影响因子反映了量子霍尔效应中电子行为的奇特性质,对于研究凝聚态物理和拓扑态物理具有重要意义。
霍尔效应和量子霍尔效应的区别量子反常霍尔效应和量子霍尔效应的区别:
1、定义不同
量子反常霍尔效应:量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。
量子霍尔效应:量子霍尔效应(quantum Hall effect)是量子力学版本的霍尔效应,需要在低温强磁场的极端条件下才可以被观察到,此时霍尔电阻与磁场不再呈现线性关系,而出现量子化平台。
2、意义不同
量子反常霍尔效应:量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。
量子霍尔效应:
整数量子霍尔效应:量子化电导e2/h被观测到,为弹道输运(ballistic transport)这一重要概念提供了实验支持。
分数量子霍尔效应:劳夫林与J·K·珍解释了它的起源。两人的工作揭示了涡旋(vortex)和准粒子(quasi-particle)在凝聚态物理学中的重要性。
3、发现不同
量子反常霍尔效应:2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。
量子霍尔效应:霍尔效应在1879年被E.H.霍尔发现,它定义了磁场和感应电压之间的关系。
反常霍尔效应的应用量子反常霍尔效应的最美妙之处就在于不需要任何外加磁场,人类有可能利用其无耗散的边缘态发展新一代的低能耗晶体管和电子学器件,从而解决电脑发热问题和摩尔定律的瓶颈问题,因此,这项研究成果将会推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命的进程。
霍尔效应在科研中的应用对于这次成果的诞生,修发贤觉得,在砷化镉的研究方面,这才刚刚开始。“这是一个作品,我们第一次提出了新的机制,也得到了认可。但还有可以深挖的,还有更具体的东西,我想得继续做细做好。
这次我们发现了三维量子霍尔效应,为今后的进一步科研探索提供一定的实验基础。另外,在应用方面这个材料体系具有非常高的迁移率,电子的传输和响应很快,可以在红外探测、电子自旋方面做一些原型器件。
为什么磁场中的二维电子气会形成量子霍尔效应呢对于二维的量子霍尔效应,可以理解为平面内部的电子在洛伦兹力的作用下不断沿着等能面旋转做周期性运动,不参与导电。
而在边缘的电子旋转到一半后,受到边界的反弹,再次做半圆运动,以这种方式不断向前运输,在量子霍尔效应中,真正参与导电的实际上是这种边缘电子,它几乎不与其他电子碰撞