极地涡旋形成原因 太阳系五大壮观景象:火星上现小型涡旋

目录导航:

  1. 极地涡旋形成原因
  2. 世界是怎样成长的
  3. 地球怎么形成的有声故事
  4. 地球是如何形成的
  5. 厄尔尼诺现象的原因
极地涡旋形成原因

极地涡旋是指极地高压。高压中心气流由中心向四周流,在地转偏向力作用下,北半球向右偏转,气流呈顺时针流动的大旋涡。这就是极地涡旋。

极地涡旋(简称“极涡”)是指通常盘踞在极地高空的冷性大型涡旋,其位置、强度、移动对极地及高纬地区的天气影响明显。2015年12月底,一个位于冰岛的强大风暴将北大西洋热量带向北极,迫使北极“极涡”离开极地,携带冷空气南下,造成我国大部分地区1月中下旬爆发极其罕见的超强寒潮。

极地涡旋(polarvortex)简称极涡,是极地高空冷性大型涡旋系统,是极区大气环流的组成部分。其位置、强度以及移动不仅对极区,而且对高纬地区的天气都有明显影响。

其位置、强度以及移动不仅对极区,而且对高纬地区的天气都有明显影响。

极地是地球的冷极,也是大气的冷源,因而在极地低空形成冷性高压,在极地上空则形成冷性低压。

极涡的位置和活动范围时有变化,尤其冬半年活动演变比较复杂,最长的活动过程达35天之久。极涡闭合中心有时分裂为2个或3个,甚至3个以上,当偏离极地向南移动时,常导致寒潮活动增多、增强。

据统计,在10个冬半年影响我国的171次寒潮中,有102次是亚洲上空出现持久极涡,其中6次强寒潮过程都与极涡在亚洲上空的位置明显偏南相关。

极地涡旋影响

南极极地涡旋比北极极地涡旋更为显著,持续时间也更长。这是因为北半球高纬度地质因素增强了罗斯比波,而就是罗斯比波引起涡旋的破裂;与之相比,在南半球涡旋则更为稳定。北极涡旋形状上是瘦长的,有两个中心,一个在加拿大的巴芬岛,而另一个在西伯利亚的东北部。

南极极地涡旋的化学现象已经导致严重的臭氧消耗。极地同温层云团中的硝酸与CFC反应生成氯,也就是对臭氧的光化学破坏。氯在冬天的极夜中凝聚、堆积,到春天(9月/10月),持续的臭氧破坏也将更为严重。这些云只能在-80°C以下形成,故而较为暖和大北极区域形成不了臭氧层空洞。

一些天体同样已知有极地涡旋现象,包括金星、火星、木星和土星的卫星土卫六。

世界是怎样成长的

地球的成长过程,在约100亿年以前,有一大片冷却的尘埃微粒涡旋在宇宙中间。这些微粒互相吸引,慢慢地聚集在一起,形成一个大的、不停旋转的圆盘,随后又甩出许多圆环。

同时,猛烈的转动使尘埃微粒达到白热程度,中心的圆盘变成太阳,外围圆环的微粒形成一个个由气体和熔液构成的巨大火球。然后开始冷却,并凝成固体。大约到40亿~50亿年前后,这些火球变成现在的地球、火星、金星等九大行星。这个理论是18世纪德国哲学家康德和法国数学家、天文学家拉普拉斯提出的“星云说”。它被认为是最合理的一种地球形成理论。

地球怎么形成的有声故事

大约100亿年以前,有一大片冷却的尘埃微粒涡旋在宇宙中间。这些微粒互相吸引,慢慢地聚集在一起,形成一个大的、不停旋转的圆盘,随后又甩出许多圆环。

同时,猛烈的转动使尘埃微粒达到白热程度,中心的圆盘变成太阳,外围圆环的微粒形成一个个由气体和熔液构成的巨大火球。然后开始冷却,并凝成固体。大约到40亿~50亿年前后,这些火球变成现在的地球、火星、金星等八大行星。这个理论是18世纪德国哲学家康德和法国数学家、天文学家拉普拉斯提出的“星云说”。它被认为是最合理的一种地球形成理论。

地球是如何形成的

大约100亿年以前,有一大片冷却的尘埃微粒涡旋在宇宙中间。这些微粒互相吸引,慢慢地聚集在一起,形成一个大的、不停旋转的圆盘,随后又甩出许多圆环。同时,猛烈的转动使尘埃微粒达到白热程度,中心的圆盘变成太阳,外围圆环的微粒形成一个个由气体和熔液构成的巨大火球。然后开始冷却,并凝成固体。大约到40亿~50亿年前后,这些火球变成现在的地球、火星、金星等九大行星。这个理论是18世纪德国哲学家康德和法国数学家、天文学家拉普拉斯提出的“星云说”。它被认为是最合理的一种地球形成理论。

厄尔尼诺现象的原因

厄尔尼诺现象是一种全球性的气候现象,由太平洋下深层的暖水偏西漂移造成的,对于一些地区会产生变暖的影响。原因可以归结为三个层面,首先是太平洋海平面不断地下降,从而使海水深入洋底,阻挡了暖水流向西太平洋,反而使暖水偏西漂移,产生出这种气候现象;

其次是暖北涡旋,从西太平洋来的低层空气持续往东向传播,向北流动冷空气回到地表,使空气温度不断升高;

最后是受到亚热带海岸昼夜温差的影响,在炎热炎冷的海洋中汇聚而成,进而影响气温。这些因素叠加在一起,就产生了厄尔尼诺现象。

厄尔尼诺形成的原因主要是海域水温升高。

大多科学家认为:一是自然因素。赤道信风、地球自转、地热运动等都可能与其有关;二是人为因素。即由于人类活动加剧,排放出过多的二氧化碳使全球气候变暖,这可能也是赤道暖事件剧增的原因之一。

影响厄尔尼诺事件的物理因子都是互相联系、互为因果的。如信风是厄尔尼诺事件的成因,太阳黑子活动又是信风的成因;地球自转速度是厄尔尼诺事件的成因,大气角动量又是地球自转速度的成因。其中信风与地球自转速度、太阳黑子活动与大气角动量又是互相联系的。这些物理因子层层相接、环环相扣,组成了一个互相联系、互为因果的厄尔尼诺事件成因链。

1.1 信风

在正常情况下,赤道太平洋盛行偏东风(信风),大洋东侧的表层暖水被输送到西太平洋,西太平洋水位不断上升,热量也不断积累,使得西部海平面通常比东部偏高40 cm,年平均海温西部约为29℃,而东部沿岸只有24℃左右。但是,当信风减弱时,维持赤道太平洋海面西高东低的支柱被破坏,西太平洋的表层暖水迅速向东蔓延,以致东太平洋地区的冷水上翻作用减弱,最终导致东太平洋海表温度SST上升,形成厄尔尼诺事件。

1.2 沃克环流

当沃克环流处于低强度状态时(即复活节岛的高压和印尼的低压同时减弱时),南半球东南信风减弱,以致赤道涌升流减弱,热带东太平洋海表温度SST上升,有利于出现厄尔尼诺事件,反之则不利于出现厄尔尼诺事件。沃克环流时强时弱,周期大约为3~5 a,与厄尔尼诺事件的周期相吻合。

1.3 东亚大槽

在厄尔尼诺事件发生前的冬半年,东亚强冷空气活动频繁,并且可直接影响到赤道中西太平洋地区,造成偏东信风减弱。因此,冬半年强东亚大槽的频繁活动,通过行星波活动不断将能量向东南方向频散到中西太平洋地区,引起赤道中西太平洋地区偏东信风持续减弱,以及对流活动加强,最终可能导致厄尔尼诺事件的发生。

1.4 热带大气环流

东亚季风区对流层高层异常强的东风急流,通过高层北风越赤道气流向南输送东风动量,使得高层澳大利亚至中太平洋散度风东风以及澳大利亚上空的辐合和下沉运动加强,导致澳大利亚低层冷空气堆积,使澳大利亚至东太平洋的纬向热力对比和澳大利亚至太平洋辐散西风增强,通过低层南风越赤道气流向北输送西风动量,抑制赤道太平洋偏东信风,从而导致厄尔尼诺事件。

1.5 太阳黑子活动

1981~1994年发生的3次厄尔尼诺事件均出现在太阳黑子活动的50 d振荡周期的谷值时期[3]。计算表明,在太阳黑子活动11 a周期的谷年前后,地球上各纬度带的年平均温度都是正距平,即此时太阳辐射达到最大值;在太阳黑子活动11 a周期的峰年前后,太阳辐射达到最小值。太阳辐射是气候形成的决定性因子,所以太阳辐射的异常变化必将引起气候的异常变化。

1.6 日食

当日食发生时,地球上接受的太阳辐射能减少,日食区气柱对外作正功是日食诱发厄尔尼诺现象的热—动力机制[5]。大尺度涡旋的动能不到地球一日获得的太阳能量的1/100,这远小于一次日食形成的大气有效位能,所以一次或数次日食可以激发大气长波。日食次数每年2~5次,不尽相同,这足以使大气环流出现异常变化。

1.7 火山爆发

陆地上强烈的火山爆发可形成全球性的尘幔。这些尘幔在高层大气中能停留数年之久,它们强烈地反射和散射太阳辐射。1883年喀拉喀托火山爆发后的三年内,北半球中纬度的太阳直接辐射分别减少10%、15%和10%。因此,火山爆发产生一种使地球变冷的效应,从而导致信风减弱,最终形成厄尔尼诺事件。

1.8 行星运动

行星运动的位置与厄尔尼诺事件有重要的联系,它是通过天体引潮力来引发厄尔尼诺事件的。四大行星(火星、木星、土星、天王星)冲日时日心黄纬的极值年指与前次和后次冲日时行星的日心黄纬相比,本次冲日时日心黄纬为极大或极小的年份。在1950~1995年,四大行星冲日时日心黄纬共出现了10个正极值年,除了1980、1981年以外,其余8个都是厄尔尼诺年。在8个负极值年中,有4个当年是厄尔尼诺年,其余4个在次年发生了厄尔尼诺现象。

1.9 天文周期

把黄道面四颗一等恒星先后与太阳、地球运行成三点一直线的四个天文奇点之太阳投影瞬时位相看成一种天文周期[7]。黄道面附近四颗一等亮星和太阳位于地球之两侧,视赤经相等之时为“合日”,四颗一等亮星和太阳位于地球之一侧,视赤经相差180°为“冲日”。合日和冲日都是星、日、地三者成直线之时。当天文奇点出现时,地球受到的天体引潮力达到最大值,从而引发厄尔尼诺事件。

1.10 地球自转速度

海水和大气都是附在地球表面的物质,它们随地球快速地自西向东旋转。在赤道上,地球自转的线速度最大,达到465 m/s。计算表明,由于地球自转速度减慢,在±10°的低纬度地区,海水可获得0。5 cm/s的向东相对速度。由于这一相对速度系作用于全球低纬度地区的整层海水,并且该向东相对速度已达全球海洋平均流速2 cm/s的四分之一,因此,当地球自转突然减慢时,会出现一种“刹车效应”,使大气和海水获得一个向东的惯性力。正是这个惯性力引起赤道洋流减弱,导致东太平洋地区的冷水上翻作用减弱,以致出现厄尔尼诺事件。

1.11 大气角动量

由于冬、夏半球接受太阳辐射的差异和南、北半球海陆分布面积的差别,引起北半球冬、夏季节的温度变率大于南半球,使得北半球冬、夏季节的大气西风角动量的变化明显大于南半球,从而导致地球自转冬季慢夏季快的季节变化[9]。厄尔尼诺事件的增温盛期一般出现在年底的事实可以说明这一点。

1.12 地幔膨胀

统计表明,厄尔尼诺事件主要出现在地球自转速度急剧减慢的第二年,其主要原因是地幔间歇性的不对称膨胀。当地球内部热量积聚过剩时,地幔膨胀,以致地球转速变慢,同时岩浆冲破地壳薄弱部位,使地震和火山爆发增多,洋中脊扩张增强。当地球内部热量散发后,地幔收缩,以致地球转速变快,同时地震和火山减少,洋中脊扩张减弱。该过程反复进行,导致地球转速出现准周期变化。

1.13 暖池海温

赤道西太平洋暖池(140°E~180°、10°S~10°N)的海温是全球最高的。在厄尔尼诺事件发生之前的半年到两年内,暖池次表层海温就有明显的持续正距平出现。厄尔尼诺事件的发生与暖池次表层海温正异常的东传有直接的关系。每当次表层海温正距平由暖池区东传到赤道中东太平洋,增暖区会逐渐向海洋表层扩展,最终引起赤道东太平洋SST的正异常,厄尔尼诺事件也就爆发。

1.14 海底地热

海底地热可直接使海水升温,从而形成厄尔尼诺事件。海底的地震活动、火山爆发、热液喷泉以及地热异常区都伴有大量的地热释放,其中热液喷泉可达300~400℃,最高可达750℃,而火山爆发的玄武质熔岩流更是高达1 100~1 200℃。太平洋的洋中脊偏在太平洋的东部,Cyana潜艇探测表明,它主要由玄武岩组成。对位于赤道西太平洋俯冲带的菲律宾群岛、新几内亚岛及位于赤道太平洋洋中脊附近的墨西哥高原南部海区等3个地震区≥7级的地震总次数与1900年以来的厄尔尼诺事件的统计表明,有80%以上的厄尔尼诺事件都发生在地震活跃年(或次年)。

厄尔尼诺现象是地球气候系统的一种自然现象,是指太平洋赤道区域海水温度异常升高的现象,一般发生在每隔2至7年间。其主要原因是太平洋赤道海域海洋和大气的相互作用过程中,暖水向东部流动减弱或停滞,导致海水温度升高。

常规情况下,洋流会把太平洋边缘的暖水推向西部,在赤道附近积聚,形成“暖池”,同时冷水则从南部深层海洋上涌,沿赤道由东向西流动,形成“冷舌”现象。但厄尔尼诺现象发生时,由于弱化了东向暖水流动的洋流,暖池区的暖水向东部大规模运动,导致海表温度异常升高,同时招致了大规模的气候变化。

厄尔尼诺并不是一种孤立的海洋现象,它是大气和热带海洋相互作用的结果。由于东南和东北太平洋,两个副热带高压的减弱,分别引起东南信风和东北信风的减弱,造成赤道洋流和赤道东部冷水上翻的减弱,从而使赤道太平洋海水温度升高,形成了厄尔尼诺现象。

这个厄尔尼诺现象的原因是由于太平洋赤道地区海水温度异常升高所导致的。正常情况下,太平洋赤道地区的气流经过海洋表面的冷水,导致其受到冷却并沉入海底,形成压力差,从而引起热带洋流水沿着赤道向东流动,这种现象被称为“厄尔尼诺现象”。

但在厄尔尼诺现象中,由于海水温度异常升高,导致海洋表面温度变暖,气流的冷却效应被削弱,导致大气环流发生变化,进而影响整个地球的气候系统。

除此之外,厄尔尼诺现象还会对全球天气产生重大影响,包括洪涝、干旱、风暴、火灾等灾害,还可能导致食品和水资源短缺。