被埋在地壳之下,压力和热量使黑色的玄武岩发生变形,形成薄薄的白色文石岩脉。随着时间流逝,这里的微生物会在黑暗、酷热、高压的环境中,通过有条不紊的新陈代谢,排泄出甲烷,改变文石中的碳同位素比例。
地下水也会为微生物在这种环境下的生存提供便利。这里的温度可能超过121摄氏度,那么这些微生物是怎么生存下去的呢?与直觉相反,超高压在这里反而帮助了微生物的生存。高压可以使DNA等生物分子更加稳定,抵抗热量带来的破坏效果。
“我们已经从过去20年的研究结果中发现,生命可以在及其多样性的生态系统中存在,甚至包括深海和冰川,如果地下深处可以让1亿年前的的微生物生存,那么今天的微生物也可以在那里生存”,Stoddard说。
同样,地外生命也可以靠这种策略在火星等严酷的环境中生存。
尽管地壳深处的生存环境有明显的缺陷,但是经过进化的微生物已经可以承受这样的环境,它们在严酷的地表环境中肯定也具有生存优势。
我们再次以火星为例。它的表面被宇宙粒子撞击的次数是地球的几百倍。火星没有磁场的保护,所以在火星表面形成的生命接触破坏性放射的可能性更大。而在地下,这种风险就小多了,被烫伤或冻伤的风险也会变小。
“地下的环境有可能对地外生命有利。因为在那里它们会受到更多的保护,不会接触到宇宙射线,也不会受到地表极端温度的影响,”Stoddard说。“我们在探索其他星球的时候要时刻记住这一点。”
Stoddard和她的同学还打算进一步研究Lopez岛的岩石,了解那里究竟有没有生命存在,以及这些生命是如何生活的。
“虽然我们的同位素数据已经在很大程度上表明地下深处有生命存在,但是对于那里的环境仍然有许多未知之处,有可能会影响我们的结论,”Stoddard说。“我们希望在未来的几个月能够详细描述出这个地下深处的生态系统。”