2013年初,一位意大利物理学家对威德罗的理论做了改进。改进后的理论不需要引入新粒子,而且得到的原初磁场强度要高得多,达到了10的负12次方高斯。这就比较有说服力了。
如何度过“黑暗期”是个问题
不过,这个问题并没有一劳永逸地解决。一些天文学家说,就算“种子”磁场产生于宇宙诞生之初,但也可能会在之后的宇宙“黑暗时期”完全被抹掉。
我们知道,磁场产生于电荷的运动,所以磁场的维持离不开带电粒子。在宇宙诞生的最初38万年,宇宙的温度过高,无法形成原子,只有电子、核子和光子。暴胀形成的“种子” 磁场由这锅翻腾的带电粒子来维持是不成问题的。
宇宙磁场
随着宇宙膨胀,它逐渐冷却,使得质子可以俘获电子形成中性的氢原子。随着它们的结合,这些粒子会向宇宙释放出电磁波,这就是背景辐射。
之后,宇宙就进入了黑暗时期,因为在这个时期,恒星没还有形成,没有任何天体会发出光,宇宙漆黑一片。唯一的辐射源就是氢原子,但它发出的电磁波属于不可见的射电波段。
这一时期,对于宇宙磁场来说,它所面临的主要问题是带电粒子数量的陡降。在黑暗时期,对应于每1万个氢原子,只有1个自由电子或质子。由于磁场依赖于电子或者质子的运动,一些科学家认为,此时“种子”磁场可能会被抹去。
宇宙磁场
黑暗时期一直延续到宇宙中第一批光源——第一代恒星——出现为止。随着恒星和星系的形成,它们会释放出巨量的辐射,将氢原子重新电离,产生自由的质子和电子。这一再电离时期会持续大约10亿年,宇宙那时会再次充斥着有利于放大磁场的电子和质子。
但是,万一在宇宙的“黑暗时期”,“种子”磁场已经彻底被抹去了,那么即便此后“曙光再现”,也于事无补了。那么,“种子”磁场是如何安然度过那个荒芜时期的?科学家迄今还茫然无绪。
我们只有等待更多的观测和分析。科学家相信,这个问题至关重要,因为只有了解了引力和磁场如何操控宇宙,我们才会真正了解宇宙的运转方式。